
Eyelid Gestures on Mobile Devices for People with Motor
Impairments

MINGMING FAN∗, School of Information, Rochester Institute of Technology, USA
ZHEN LI∗, Department of Computer Science, University of Toronto, Canada
FRANKLIN MINGZHE LI∗, Department of Computer Science, University of Toronto, Canada

Eye-based interactions for people with motor impairments have often used clunky or specialized equipment
(e.g., eye-trackers with non-mobile computers) and primarily focused on gaze and blinks. However, two eyelids
can open and close for different duration in different orders to form various eyelid gestures. We take a first
step to design, detect, and evaluate a set of eyelid gestures for people with motor impairments on mobile
devices. We present an algorithm to detect nine eyelid gestures on smartphones in real-time and evaluate it
with twelve able-bodied people and four people with severe motor impairments in two studies. The results of
the study with people with motor-impairments show that the algorithm can detect the gestures with .76 and
.69 overall accuracy in user-dependent and user-independent evaluations. Moreover, we design and evaluate a
gesture mapping scheme allowing for navigating mobile applications only using eyelid gestures. Finally, we
present recommendations for designing and using eyelid gestures for people with motor impairments.
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1 INTRODUCTION
Fifteen percent of people in the US have difficulties with their physical functioning, among whom
almost half find it very difficult or impossible to walk unassisted for a quarter-mile [11]. Although
specialized devices, such as eye-trackers [21, 29, 31, 33], brain-computer interfaces [3], and mechan-
ical devices (e.g., joysticks [35, 39, 40], trackballs [38], mouse pieces [9, 34]), have been investigated
to assist people with motor impairments, such devices are often clunky, intrusive, expensive, and
limited in accuracy and functions (e.g., text entry). In contrast, smartphones become increasingly
ubiquitous, powerful, and can be beneficial to people with motor impairments [24].
Rich sensors on smartphones have enabled new opportunities to assist people with motor

impairments. For example, motion sensors and touch screens have been used to recognize physical
activities [2] and diagnose and quantify motor ability [1, 5, 14, 28]; microphones allow for using
speech to enter texts [32] and issue commands [10, 27]. Although another sensor—camera—has
been explored to assist people with motor impairments to enter text [6, 26, 41], issue gesture
commands [13, 17, 29], and navigate a wheelchair [4, 8, 33, 42] , such research has primarily focused
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on utilizing gaze (e.g., eyeball movements) [13, 17, 26, 29, 33, 41, 43] and blinks [12, 16, 22, 43] for
interactions. However, human’s two eyelids can be in open and close states for short and long
periods in concurrent and sequential orders to form a rich set of eyelid gestures, which could extend
and enrich existing eye-based interactions. In this work, we make an initial exploration into the
design space of eyelid gestures on mobile devices for people with motor impairments.
We first introduce a taxonomy to describe and construct potential eyelid gestures based on

four primitive eyelid states. Although some eyelid gestures, such as winks, were proposed for
hands-free interaction [15], our work explores a richer set of eyelid gestures and is the first to
present an algorithm to recognize them on a smartphone in real-time. Moreover, we evaluated the
performance of the algorithm in two user studies with people without and with motor impairments.
In the first study, twelve able-bodied participants performed the nine eyelid gestures in two indoor
environments and different postures. The overall accuracy of user-dependent and user-independent
models was .76 and .68 respectively, which shows that the algorithm was robust to differences
in environments and postures. We then conducted the second study in which four participants
with severe motor impairments performed the same set of gestures. The overall accuracy of user-
dependent and user-independent models was .76 and .69 respectively. Furthermore, we designed
a mapping scheme to allow users to navigate mobile applications only using eyelid gestures. We
asked the participants with severe motor impairments to complete a set of navigation tasks only
using eyelid gestures. Results show that they perceived the eyelid gestures were easy to learn and
the mapping was intuitive. They further reported how the eyelid gestures and the mapping scheme
can be further improved. Finally, we present design recommendations for using eyelid gestures for
people with motor impairments and discuss the limitations and future research directions.

2 EYELID GESTURE DESIGN AND RECOGNITION
2.1 Design
Eyelid states refer to the states in which two eyelids can be and have four possible values: both
eyelids open, both eyelids close, only the right eyelid close, and only the left eyelid close. Technically, an
eyelid can also be in a half-closed state (e.g., squinting). However, sustaining eyelids in a half-close
state can cause them to twitch or cramp [15]. Moreover, our investigation found that it is still
challenging to robustly recognize half-close states with current technology. Thus, as an initial
exploration into this design space, we focus on the four states when constructing eyelid gestures.
Because the “both eyelids open” state is the most common state when humans are awake, we use it
as the gesture delimiter to label the start and end of an eyelid gesture.

In addition to the four eyelid states, humans can control the duration of an eyelid state [15]. As it
can hard to memorize the exact duration of a state, we discretize duration into two levels—short
and long. Short duration refers to the time that it takes to intentionally close an eyelid (e.g., longer
than a spontaneous blink (50 - 145 ms) [36]) and open it immediately afterward. Long duration is
closing an eyelid, sustaining it for some time, and then opening it. As users may have different
preferences for holding the eyelids in a state, it is ideal to allow them to decide on their preferred
holding duration as long as they keep it consistent. For simplicity, in this work, users are instructed
to count a fixed number of numbers (e.g., three) by heart while holding eyelids in a state.
By controlling the eyelid states and their duration, we could construct an infinite number of

eyelid gestures with one or more eyelid states between the gesture delimiter. As an initial step
toward exploring this vast design space, we focused on recognizing nine relatively simple eyelid
gestures, which consist of only one or two eyelid states between the gesture delimiter. Fig. 1 shows
these nine eyelid gestures and their abbreviations.
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Fig. 1. The descriptions and abbreviations of the nine eyelid gestures that our algorithm detects in real-time.
Each letter in a gesture abbr. depicts the gesture’s key eyelid states between the common start and end states
(i.e., “both eyelids open”). The dash line indicates holding the eyelid(s) in the state that it follows. For example,
‘B-R-’ represents the gesture that starts from “both eyelids open”, transitions to “Both eyelids close”, sustains
in the state for some time (-), transitions to “only the Right eyelid close”, sustains in the state for some time
(-), and ends at “both eyelids open”. Similarly, the “double blink” gesture ‘BOB’ includes “Both eyelids close”,
“Both eyelids Open”, and “Both eyelids close” between the common start and end states (i.e., delimiter).

Fig. 2. The probabilities of two eyes being open when a user performs each of the nine eyelid gestures. The
blue (solid) and cyan (dashed) lines represent the probabilities of the left and right eye being open respectively.

2.2 Recognition Algorithm
Our algorithm is implemented on Samsung S7 running Android OS 8.0. It first obtains images from
the front-camera (30 frames per second) with 640 x 480 resolution and leverages Google Mobile
Vision API to generate a stream of probability pairs of each eye being open (𝑃𝐿 , 𝑃𝑅) [20]. The details
of how the API estimates probability can be found in [20]. Fig. 2 shows some examples of the
probabilities of two eyes being open in the nine eyelid gestures performed by a user. Notice that
when the user closes the right or left eye, the probability of this eye being open is not necessarily
the same, and the probability of the other eye being open might also drop at the same time. It
suggests that the probability estimation of the API [20] is noisy, and there are variations in the
probability estimations even when the same user performs the same gesture.

To cope with the variations in probability estimations, our algorithm incorporates an eyelid-state
Support Vector Machine (SVM) classifier to classify an input pair (𝑃𝐿 , 𝑃𝑅) into two states: open (O) if
both eyes are open and close (C) if any eye is closed. Because the “both eyes open” (O) state is used
as the gesture delimiter, the algorithm then segments the stream of probability pairs between the
delimiter. The algorithm then computes the duration of an segment and filters it out if its duration
is too short because extremely short segments are likely caused by spontaneous blinks (50 - 145
ms [36]) or noises in probability estimations. We tested different thresholds for duration from 150
to 300 ms and adopted 220 ms for its best performance. Next, the duration of the segment is fed into
another SVM classifier, which further distinguishes if it is a short-duration or long-duration gesture
(Fig. 1). The algorithm then re-samples the sequence of probability pairs (𝑃𝐿 , 𝑃𝑅) in the segment to
ensure all segments contain the same number of probability pairs (50 and 100 samples for short and
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long gestures respectively). Next, the re-sampled same-length vector is fed into the corresponding
short-duration SVM classifier or a long-duration SVM classifier. Finally, the short-duration classifier
detects whether the segment is R, L, B or BOB; and the long-duration classifier detects whether the
segment is R-, L-, B-, B-R-, or B-L-. All SVM classifiers are implemented using scikit-learn library
with the Radial Basis Function kernel and default parameters [25]. For greater reproducibility, we
make our code available here1.

3 STUDYWITH PEOPLE WITHOUT MOTOR IMPAIRMENTS
We conducted the first study to understand how well our algorithm recognizes eyelid-gestures on a
mobile device for able-bodied people before moving to people with motor impairments.

3.1 Participants
We recruited 12 able-bodied participants aged between 23 and 35 (𝑀 = 26, 𝑆𝐷 = 4, five males and
seven females) to participate in the study. Their eye colors include brown (11) and amber (1). Seven
wore glasses, one wore contact lenses, and four did not wear glasses or contact lenses. No one worn
false eyelashes. The study lasted half an hour, and participants were compensated with $15.

3.2 Procedure
We used a Samsung S7 Android phone as the testing device to run the eyelid gesture recognition
evaluation app (Fig. 3) in real-time. To increase evaluation validity, we collected training and testing
data in two different offices. We first collected training data by asking participants to keep their
eyelids in each of the four eyelid states and then perform each of the nine eyelid gestures five times
following the instructions in the app while sitting at a desk and holding the phone in their preferred
hand in one office. We then collected testing data by asking them to perform each eyelid gesture
another five times while standing in another office room and holding the phone in their preferred
hand. The differences in physical environments and postures increased variations between training
and testing data. Similarly, the variations in ways how they held the phone in their preferred hands
also introduced variations between training and testing data.

Fig. 3. (a)-(d) present the data collection UIs for eyelid states (a, b) and for eyelid gestures (c, d). 1○ shows
the name of eyelid states or eyelid gestures, 2○ shows the face detection result, and 3○ are control buttons,
such as "start", "cancel", and "redo". During eyelid gesture evaluation, detected eyelid state is shown in 4○.

1https://github.com/mingming-fan/EyelidGesturesDetection
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Fig. 4. Study One: The confusion matrix of user-dependent (a) and user-independent (b) evaluations respec-
tively (columns: ground truth; rows: predictions; N/A means not recognized).

To collect data samples for each eyelid state, the evaluation app first presented a target eyelid
state on the top side of the screen (Fig. 3a, b) in a random order. Participants were asked to first
prepare their eyes in the state and then press the green ‘START’ button to start data collection at a
speed of 30 frames per second. The app beeped after collecting 200 frames, and the button turned
to yellow to indicate that the data collection for this eyelid state was done. The app presented
another eyelid state and repeated the procedure until data samples for all four eyelid states were
collected. These data were used to perform 10-cross cross-validation of the eyelid state classifier on
the phone in real-time. The training process took on average 558 milliseconds.
To collect the training data for each of the nine eyelid gestures, the evaluation app presented

a target gesture on the top side of the screen (Fig. 3c, d). Participants were asked to press the
green ‘START’ button and then perform the target gesture. Upon finishing, participants pressed
the ‘STOP’ button. The app recorded and stored the stream of eyelid states during this period. The
app presented each eyelid gesture five times randomly. Thus, the app collected five samples per
gesture for each participant, which was used to train the eyelid gesture classifier on the phone in
real-time. The training process took on average 102 milliseconds.
To collect testing data, participants were asked to perform each eyelid gesture five more times

while standing in another office room using the same app and aforementioned procedure.

3.3 Results
To evaluate the eyelid state classifier, we performed 10-fold cross validations; to evaluate the eyelid
gesture classifier, we performed both user-dependent and user-independent evaluations.

3.3.1 Eyelid State Evaluation. We performed a 10-fold cross-validation on each participant’s data
and averaged the performance across all participants. The overall accuracy was .92 (𝑆𝐷 = .09).
The accuracy for each eyelid state was as follows: both eyelids open (.98), right eyelid close (.89),
left eyelid close (.85), and both eyelids close (.96). Because both eyes open was the gesture delimiter
to separate eyelid gestures, we further trained a classifier to recognize only two eyelid states by
grouping all the other three states together. The average accuracy was 0.98 (𝑆𝐷 = .02).

3.3.2 User-dependent Eyelid Gesture Evaluation. For each participant, we trained a user-dependent
classifier with five samples for each gesture and tested it with another five samples. We then
averaged the performance of the classifier for each gesture across all participants. The average
accuracy of all gestures was .76 (𝑆𝐷 = .19) and the average accuracy for each gesture was as follows:
L (.93), R (.78), B-R- (.78), B-L- (.78), B (.77), L- (.77), B- (.75), R- (.73), and BOB (.57). This result
suggests that user-dependent gesture classifiers were able to detect eyelid gestures when users were
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in different indoor environments and postures. We further computed the confusion matrix to show
how gestures were misclassified in Fig. 4a. In addition, the average time it took for participants to
complete each gesture was as follows: R (745 ms), L (648 ms), B (668 ms), R- (2258 ms), L- (2010 ms),
B- (2432 ms), B-L- (4169 ms), B-R- (4369 ms), BOB (2198 ms). It shows that more complex gestures
took longer to complete overall.

3.3.3 User-independent Eyelid Gesture Evaluation. To assess howwell a pre-trained user-independent
eyelid gesture classifier would work for a new user whose data the classifier is not trained on, we
adopted a leave-one-participant-out scheme by keeping one participant’s data for testing and the
rest participants’ data for training. The average accuracy of all gestures is .68 (𝑆𝐷 = .17), and the
average accuracy for each gesture was as follows: L (.88), R (.78), B-L- (.77), B (.75), L- (.7), B-R- (.63),
R- (.6), B- (.57), and BOB (.47). We also computed the confusion matrix to show how gestures were
misclassified in Fig. 4b. This result suggests that a pre-trained user-independent eyelid gesture
classifier could be used "out-of-box" with reasonable accuracy for a user, but the performance could
be improved if the classifier is trained with the user’s data samples (i.e., user-dependent classifier).

4 STUDYWITH PEOPLE WITH SEVERE MOTOR IMPAIRMENTS
4.1 Participants
Although people with motor impairments are relatively small population [7, 37], we were able to
recruit four people with severe motor impairments (PMI) for the study with the help of a local
organization of people with disabilities. Table 1 shows participants’ demographic information. One
participant wore contact lens, and the rest did not wear glasses or contact lens. The study lasted
roughly an hour, and each participant was compensated with $15.

Table 1. The demographic information of the people with motor impairments.

ID Gender Age Motor Impairments Hand Function Note
P1 F 29 cervical spinal cord injury

(C5)
having difficulty holding and grasping; us-
ing a ring holder stand for her phone

car accident in 2012; using
a wheelchair

P2 F 32 cervical spinal cord injury
(C6)

having difficulty extending and strength-
ening fingers; using an index finger’s
knuckle to touch her phone

acute myelitis in 2003; us-
ing a wheelchair

P3 M 53 cervical spinal cord injury
(C5)

having no control over individual fingers;
moving forearms to move hands and us-
ing a ring fingertip to touch his phone

car accident in 2004; using
a wheelchair

P4 M 63 two forearms amputation using his prosthetic arms to hold and in-
teract with his phone

electric shock during high-
voltage work in 1989

4.2 Procedure
The studies were conducted in participants’ homes. Fig 5 shows the study setup. We asked partici-
pants to sit in their daily wheelchair or a chair. We positioned an Android phone (Huawei P20) on
the top of a tripod and placed the tripod on their wheelchair tables or desks so that the phone was
roughly 30-50 cm away from their faces and its front camera was roughly at their eye level.
We slightly modified the evaluation app (Fig. 3) to accommodate the participants’ motor im-

pairments. Instead of asking them to press ‘START’ and ‘STOP’ buttons, the app used a 10-second
countdown timer to automatically trigger the start and end of each task. In cases where participants
needed a pause, they simply asked the moderator to pause the task for them. The participants
followed the instructions of the evaluation app to keep their eyelids in instructed eyelid states
so that 200 frames were collected for each eyelid state. These data were used to evaluate the
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Fig. 5. During the study, P1, P2, and P3 sat in their daily wheelchairs. P4 did not use a wheelchair and sat in
a chair in front of a desk. The evaluation smartphone was mounted on the top of a tripod, which was placed
on the wheelchair trays or the desk with the phone’s front camera roughly at their eye levels.

Fig. 6. Study Two: The confusion matrix of user-dependent (a) and user-independent (b) evaluations respec-
tively (columns: ground truth; rows: predictions; N/A means not recognized).

eyelid state classifier in a 10-fold cross-validation. Next, the participants followed the instructions
of the evaluation app to perform each gesture five times, which were used as training data for
user-dependent evaluation. After a break, the participants followed the same procedure to perform
each gesture five times again, which were used as testing data for the user-dependent evaluation.

4.3 Results
4.3.1 Eyelid State Evaluation. We performed a 10-fold cross-validation on each participant’s data
and averaged the performance across all participants. The overall accuracy was .85 (𝑆𝐷 = .15), and
the accuracy for each eyelid state was as follows: both eyelids open (.99), right eyelid close (.65),
left eyelid close (.79), and both eyelids close (.99). We noticed that individual differences exist. For
example, P2 had trouble controlling her right eyelid and consequently had much lower accuracy
for closing the right eyelid: both eyelids open (.997), right eyelids close (.02), left eyelids close (.57),
and both eyelids close (1.00). When the last three eyelid states were grouped into one close state, the
accuracy of the two-state classifier was more robust: .997 (𝑆𝐷 = .004).

4.3.2 User-dependent Eyelid Gesture Evaluation. We performed the same user-dependent evaluation
as Section 3.3.2, and the overall accuracy of all gestures was .76 (𝑆𝐷 = .15). The accuracy for each
gesture was as follows: B-R- (1.00), B- (.95), B (.95), L- (.85), L (.80), R (.75), R- (.60), B-L- (.55), and
BOB (.35). We computed the confusion matrix (Fig. 6a) to show how gestures were misclassified.
Similarly, we also computed the average time to complete each gesture: R (699 ms), L (889 ms), B
(850 ms), R- (3592 ms), L- (3151 ms), B- (3722 ms), B-L- (6915 ms), B-R- (6443 ms), BOB (3002 ms).
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4.3.3 User-independent Eyelid Gesture Evaluation. We performed the same user-independent eval-
uation as Section 3.3.3, and the overall accuracy was .69 (𝑆𝐷 = .20). The accuracy of each gesture
was as follows: B- (.95), B-R- (.90), B (.85), L (.75), L- (.65), R- (.55), B-L- (.55), BOB (.55), and R (.50).
We also computed the confusion matrix (Fig. 6b) to show where the misclassifications happened.

4.4 Interacting with Mobile Apps with Eyelid Gestures

Fig. 7. The mapping scheme for navigating apps (B-R-, B-L-), tabs/screens (R-, L-), and containers (R, L).

Navigating between and within mobile apps is a common task that is typically accomplished
by a series of touch actions on the screen. App navigation happens at three levels: between apps,
between tabs/screens in an app, and between containers in a tab/screen of an app. Tab is a common
way of organizing content in an app. Screen is another way of organizing content, usually in the
launcher. Within a tab, content is further organized by containers, often visually presented as cards.
To allow people with motor impairments to accomplish the three types of navigation using

eyelid gestures only, we iteratively designed a mapping scheme between the gestures and the
types of navigation (Fig. 7) by following two design guidelines: 1) navigation directions should
be mapped consistently with the eyelid being closed (e.g., closing the right/left eyelid navigates
forward/backward to the next opened app); and 2) the complexity of the eyelid gestures for the
lowest-level to the highest-level navigation should increase. Because navigating between apps has
the most significant overhead [18], we assign the eyelid gestures with two eyelid states (e.g., B-R-,
B-L-) to this level of navigation. In addition to navigation, BOB is used for selecting an item.

4.4.1 Evaluation. We designed app navigation tasks to measure how well participants would be
able to learn the mappings and use the eyelid gestures to accomplish various navigation tasks. The
evaluation app simulated three mobile apps (APP1, APP2, APP3), which were color-coded (Fig. 8).
Each app contains three tabs (TAB1, TAB2, TAB3). Each tab contains four containers numbered
from 1 to 4. The outline of the container in focus is highlighted in red. The focus of attention was
on the first container in TAB1 of APP1 when the evaluation started. Each participant was given a
practice session which contained five navigation tasks, and the target item for each navigation was
randomly generated. The app spoke out a target location using Android’s text-to-speech API and
also showed it on the bottom left of the UI. Each participant was asked to use eyelid gestures to
navigate the focus of attention to the target item. Once the target location was reached, the next
navigation task was delivered in the same manner. The practice session took on average less than 5
minutes to complete. Afterwards, the evaluation app generated another five randomized navigation
tasks for participants to work on. Upon completion, participants were asked whether each gesture
was a good match for completing the corresponding task (i.e., “would that gesture be a good way to
complete the navigation?” ), and whether each gesture was easy to perform (i.e. “rate the difficulty of
carrying out the gesture’s physical action” ) using 7-point Likert-scale questions, which were used to
elicit feedback on gesture commands (e.g., [23, 30]).
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Fig. 8. (a)-(d) present the app navigation UIs. 1○ shows the containers, 2○ shows the tabs, 3○ shows the
current app name, and 4○ shows the target item of current trial. Three types of navigation are illustrated:
between containers in a tab (a, b), between tabs within an app (a, c), and between apps (a, d).

4.4.2 Subjective feedback. The average ratings of the physical difficulty of carrying out the eyelid
gestures were as follows (the higher the value, the easier the gesture): BOB (7),B- (7), R (6.8), L
(6.5), L- (5.5), R- (5.5), B-R- (5.5) and B-L- (5.5). Three out of the four PMI participants felt eyelid
gestures were easy to learn and they were getting better after a brief practice. “It was hard for me to
perform some gestures because I had barely trained for these gestures other than blinking. For example,
I had difficulty closing both eyelids first and then opening the left eyelid alone. I think the reason was
that I had better control over the right eyelid than the left, and I had not practiced this gesture before.
However, I did find it became more natural after I practiced for a couple of times.-P3”
The rest PMI participant felt that the gestures requiring to open one eyelid at first and then

both (i.e., B-L- and B-R-) are fatiguing. Instead, they proposed new eyelid gestures in the opposite
direction, such closing one eye first and then closing the other one (e.g., L-B-, R-B-).

For those long eyelid gestures, our method required users to sustain their eyelids in a state (i.e.,
open or close) for a period (i.e., counting three numbers by heart). P1 expressed that she would like
to be able to customize the duration, such as shortening it: “I noticed that a long holding time did
help the system distinguish my ‘long’ gestures from ‘short’ ones well. But I was a bit frustrated about
the long holding time because I felt somehow it wasted time. The system could allow me to define the
duration for ‘short’, ‘long’, or perhaps even ‘long-long’. For example, it could ask me to perform these
gestures and then learns my preferred duration for short and long gestures.”

The average ratings of the mappings between eyelid gestures and the levels of navigation were as
follows (the higher the value, the better the mapping): R (6.08), L (6.08), R- (5.83), L- (5.83), B- (5.67),
B-R- (5.33) and B-L- (5.33). All four PMI participants felt the mappings were natural. In particular,
participants appreciated that more complex eyelid gestures were assigned to less-frequent and
high-cost commands (e.g., switching apps) while simpler eyelid gestures were assigned to relatively
more-frequent and low-cost commands (e.g., switching between containers or tabs within an app).
“As a person with a cervical spine injury, it is common for me to commit false inputs. Making apps-
switching harder can prevent me from entering other apps by accident. Since I use in-app functionalities
more often than switching between apps, I prefer having simple eyelid gestures associate with frequent
in-app inputs, such as scrolling up to view new updates in a social media app.-P1”
In addition, P4 felt that it would be even better to allow a user to define their own mappings

in cases where the user is unable to open and close both of their eyes at the same level of ease.
Furthermore, P2 and P4 wished to have an even harder-to-perform gesture as the "trigger" to
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activate the recognition. “I have difficulty holding my phone stable and might have falsely triggered
the recognition more often than others. For example, I may need more time to place the phone at a
comfortable position before using it. During this time, I may accidentally trigger false commands to
the phone. Therefore, a harder-to-perform gesture, perhaps triple winking, might be a good one for me
to trigger the recognition.-P4 (with prosthetic arms)”
We further asked participants about the usage scenarios of the eyelid gestures. Participants felt

that eyelid gestures are handy when it is inconvenient to use their hands or fingers. “Eyelid gestures
are useful when I lie down on my stomach and rest. I have better control over my eyelids than my
fingers. In fact, I can barely control my fingers. Similarly, I would like to use it when I cook or take a
bathroom. Also, because it is extremely difficult for me to press buttons on a TV remote, I’d love to use
the eyelid gestures to switch TV channels.-P2”
Overall, we found that participants would like to apply eyelid gestures on various types of

electronic devices (e.g., TVs, PCs, smartphones, tablets) in daily activities. Moreover, we found
that participants preferred the eyelid gesture system to allow them to 1) customize the eyelid
gesture holding time and the mappings between gestures and the triggered commands; 2) use a
hard-to-perform gesture to activate the recognition to reduce false positives; and 3) interact with
computing devices in scenarios when fingers or hands are inconvenient or unavailable to use.

5 DISCUSSION
Our user studies with people without and with motor impairments have shown that our algorithm
was able to recognize their eyelid gestures on mobile devices in real-time with reasonable accuracy.
This result is encouraging because they only had less than five minutes to practice the gestures.
Thus, we believe our algorithm opens up a new opportunity for people with motor impairments to
interact with mobile devices using eyelid gestures.

We present five recommendations for designing and using eyelid gestures for people with motor
impairments: 1) because not all users could open and close two eyelids with the same level of ease,
it is important to estimate how well a user can control each eyelid and then only use the gestures
the user can comfortably perform; 2) because a pre-defined duration for holding an eyelid in a state
may not work the best for everyone, it is desirable to allow for customizing the duration. Indeed,
participants suggested that the system could learn their preferred duration from their gestures;
3) use the eyelid gestures with two or more eye-states (e.g., B-R-, B-L-) to trigger rare or high
error-cost actions because users perceive such gestures more demanding and less likely to be falsely
triggered; 4) allow users to define a “trigger” gesture to activate the gesture detection to avoid false
recognition; 5) allow users to define their own gestures to enrich their interaction vocabulary.

6 LIMITATIONS AND FUTUREWORK
Although our studied included participants of different ages and motor abilities, the number of
participants was still small. Future work should conduct larger scale studies with more participants
who have a more diverse set of motor-impairments to better understand practices and challenges
associated with using eyelid gestures.

We explored a subset of possible eyelid gestures with one or two eyelid states between the gesture
delimiter. There are other gestures with two or more eyelid states, such as “winking three times
consecutively.” Although such gestures seem to be more complex, they might be more expressive
and thus easier to remember. Future work should explore the trade-offs between the complexity
and expressiveness of eyelid gestures.

We divided the duration of an eyelid state into two levels: short and long. However, more levels
are possible. Indeed, a participant in Study 2 suggested “long-long” duration. Future work should
study the levels of duration that users could reasonably distinguish to uncover more gestures.
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We focused on two eyelid states (i.e., open and close) when constructing eyelid gestures. As is
described in Section 2.1, our eyes could also be in half-closed states (e.g., squinting). Future work
should explore a more diverse set of eyelid gestures including open, close, and half-closed states.

We used “both eyelids open” as the gesture delimiter as it is the default state when we are awake.
However, other delimiters might enable new eyelid gestures, such as “blinking the right/left eye
twice (while closing the other eye).” Thus, future work should explore other reasonable delimiters.
Our study showed that people with motor impairments preferred customizing eyelid gestures

to use in different contexts and to avoid false activation of recognition. Thus, it is valuable to
understand what eyelid gestures people with motor impairments would want to create and use,
such as via a co-design workshop with them.
Lastly, people with motor impairments have already used gaze for text entry [43], drawing on

computer screens [13], and navigating their wheelchairs [4, 8, 19, 33, 42]. Thus, future work could
explore ways to combine eyelid gestures with gaze to enrich their interaction bandwidth.

7 CONCLUSION
We have presented a taxonomy to describe and construct eyelid gestures and an algorithm to detect
nine eyelid gestures on smartphones in real-time. We have demonstrated that the algorithm could
recognize nine eyelid gestures for both able-bodied users in different indoor environments and
postures (i.e., sitting and standing) and for people with motor impairments with only five training
samples per gesture. Moreover, we have designed a gesture mapping scheme for people with motor
impairments to navigate apps only using eyelid gestures. Our study also shows that they were
able to learn and use the mapping scheme with only a few minutes practice. Based on participants’
feedback and our observations, we proposed five recommendations for designing and using eyelid
gestures. Our work took the first step to explore the potential of a subset of possible eyelid gestures
for people with motor impairments. Future work includes conducting larger scale studies with
more people with a diverse set of motor ability in different environments, exploring a richer set of
eyelid gestures by allowing for customization and using different gesture delimiters, and combining
eyelid gestures with other input modalities, such as gaze.
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