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Figure 1: A simulated driving test involving 9 people with PD and 13 non-PD (normal control, NC) individuals showed 
considerable variation in driving abilities among people with PD. Notably, 5 out of 9 individuals with PD showed no decline in 
driving performance due to the disease, with their skills closing the average level of non-PD participants. 
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Abstract 
Parkinson’s Disease (PD) significantly impacts driving abilities, of-
ten leading to early driving cessation or accidents due to reduced 
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motor control and increasing reaction times. To diminish the impact 
of these symptoms, we developed PANDA (Parkinson’s Assistance 
and Notification Driving Aid), a multi-modality real-time alert sys-
tem designed to monitor driving patterns continuously and provide 
immediate alerts for irregular driving behaviors, enhancing driver 
safety of individuals with PD. The system was developed through a 
participatory design process with 9 people with PD and 13 non-PD 
individuals using a driving simulator, which allowed us to identify 
critical design characteristics and collect detailed data on driving 
behavior. A user study involving individuals with PD evaluated the 
effectiveness of PANDA, exploring optimal strategies for delivering 
alerts and ensuring they are timely and helpful. Our findings demon-
strate that PANDA has the potential to enhance the driving safety 
of individuals with PD, offering a valuable tool for maintaining 
independence and confidence behind the wheel. 

CCS Concepts 
• Human-centered computing → Empirical studies in acces-
sibility; Usability testing. 
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1 INTRODUCTION 
Parkinson’s Disease (PD) is a progressive neurological disorder that 
affects about 1.7% of individuals over 65, with prevalence increas-
ing with age [76, 92]. This equates to millions of people globally, 
many of whom are active drivers [76]. PD impairs motor functions, 
cognitive abilities, and visual processing, all of which are critical for 
safe driving [70]. Simulated and real-world driving studies have re-
vealed significant challenges faced by drivers with PD, particularly 
those with attentional or motor impairments [21, 70, 77]. These 
challenges lead to delayed or incorrect operations, posing risks not 
only to individuals with PD but also to public safety [21, 75, 77]. 
With the global aging population increasing rapidly, addressing 
driving challenges in PD is not just a public health issue but a soci-
etal imperative, as unsafe driving due to PD-related impairments 
impacts road safety, healthcare costs, and individual quality of life 
[64, 81]. Additionally, premature cessation of driving can lead to 
social isolation and psychological issues, such as depression [22]. 

To address the risks associated with driving while managing 
PD symptoms, traditional driving evaluations are recommended 
every 6–12 months [76]. These assessments typically involve multi-
disciplinary teams conducting practical driving tests. However, 
these episodic evaluations are inadequate for capturing the day-to-
day variability in driving ability caused by PD’s fluctuating symp-
toms [38]. Furthermore, explicit driving assessment methods can 
add cognitive load, causing stress that may impair performance [42]. 
Compounding these issues, people with PD and their doctors often 

overestimate driving abilities [34], leading to potential underestima-
tion of risks. Additionally, the lack of specific driving regulations for 
individuals with PD in many countries contributes to reluctance to 
seek assessments due to fear of unfavorable outcomes [3]. Despite 
the publication of several guidelines, neurologists face challenges 
in providing evidence-based consultation about driving fitness, as 
the procedures and their roles in evaluations remain unclear [76]. 

The problem is inherently complex due to the dynamic nature 
of PD symptoms, which can be influenced by factors such as dis-
ease progression, mood, medication effects, and stress levels. This 
variability complicates the development of reliable, real-time sys-
tems to monitor driving ability. Traditional approaches often fail to 
provide continuous and adaptive feedback, leaving a critical gap 
in addressing real-world driving scenarios. Additionally, explicit 
evaluations conducted in controlled settings may not reflect actual 
driving conditions, and the stress induced by such evaluations can 
further skew results [34]. Moreover, the fear of losing driving priv-
ileges discourages individuals from participating in assessments, 
limiting the effectiveness of current methods in ensuring public 
safety and individual well-being. 

In light of these challenges, we explored the following research 
questions: 

• What specific challenges do individuals with PD face while 
driving? 

• What design principles should an effective driving assistance 
system incorporate? 

• What real-time alert strategies are most effective in enhanc-
ing safety and user confidence? 

To address these questions, we present PANDA (Parkinson’s 
Assistance and Notification Driving Aid), a system that leverages 
data from eye-tracking, steering wheel, and pedal sensors to detect 
irregular driving patterns and provide timely alerts. Recognizing 
the increasing prevalence of sensor integration in modern vehicles, 
PANDA offers a practical and scalable solution for real-time and 
continuous assessment. Our approach is informed by three steps: 
1) a preliminary interview with 11 individuals with PD and 4 PD 
specialists to identify key design principles, 2) simulated driving 
tasks involving 9 individuals with PD and 13 non-PD participants 
to collect data for model training, establish baseline behavior and 
refine alert strategies, and 3) a user study validating PANDA’s 
usability with 5 individuals with PD. By addressing the limitations of 
traditional evaluations and integrating real-time feedback, PANDA 
aims to empower individuals with PD to drive safely and confidently 
in daily scenarios. The contributions of this paper are as follows: 

• We conducted a preliminary study with both 11 individuals 
with PD and 4 PD specialists to identify existing practices, 
perceptions, and challenges of people with PD regarding 
driving; 

• We collected a multi-modality driving dataset from 22 partici-
pants, including both people with PD and non-PD individuals 
in simulated driving. To accelerate the development in this 
field, we provide this dataset on Google Drive1; 

1https://drive.google.com/drive/folders/1bZSsoktWF9d_0AQhjSIrQYdPnwsaQPni? 
usp=drive_link 

https://doi.org/10.1145/3706598.3713920
https://drive.google.com/drive/folders/1bZSsoktWF9d_0AQhjSIrQYdPnwsaQPni?usp=drive_link
https://drive.google.com/drive/folders/1bZSsoktWF9d_0AQhjSIrQYdPnwsaQPni?usp=drive_link


CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Figure 2: Our study employs a user-centered, three-step design process: In the preliminary study, we gathered challenges and 
system design principles through interviews. During the system design stage, we collected user operation data and used it to 
train a PD driving state monitor system. In the user study phase, we obtained feedback on the monitor system with various 
alerts and derived effective alert strategies for drivers with PD. 

• We developed a novel machine learning model capable of de-
tecting and distinguishing driving behaviors between people 
with PD and non-PD individuals in real-time; 

• We designed a technology probe (PANDA) using our model 
and identified novel visual alert preferences, audio alert pref-
erences, and design implications for driving monitoring and 
alerting systems for people with PD; 

• We evaluated PANDA to understand the experiences and 
design implications of a real-time alert system with 5 people 
with PD. 

2 RELATED WORK 
In this section, we review prior research on the impact of Parkin-
son’s Disease (PD) on daily activities, its effects on driving per-
formance, and advancements in driving monitoring and alerting 
systems. 

2.1 Parkinson’s Disease in Daily Activity 
Parkinson’s disease (PD) is marked by motor symptoms such as 
tremors, rigidity, bradykinesia/akinesia, and postural instability [6], 
all of which significantly affect daily activities and quality of life 
[33, 50, 78, 83]. Efforts to improve the lives of individuals with PD 
have resulted in various assistive technologies. For instance, spe-
cialized spoons designed to remain upright help mitigate tremors 
during eating [2], while wearable devices employing visual, audi-
tory, or tactile cues assist with walking challenges [5, 13]. Driving, 
a vital aspect of independence and quality of life [67], has also been 
extensively studied, but research primarily focuses on assessing 
driving impairments rather than developing tools to assist peo-
ple with PD in driving safely. This represents an unmet need for 
targeted innovations in driving assistance for people with PD. 

Real-time driving data is closely linked to driving status, and 
its crucial role in classifying driving conditions, such as fatigued 
driving and distracted driving, has been demonstrated in various 
tasks [69, 74]. However, doctors cannot access patients’ driving data 
during the clinical stage, and the relationship between clinical data 
and driving ability remains widely debated [18], making it difficult 
for doctors to accurately assess a patient’s driving capability. We 
believe that obtaining and analyzing real-time driving data from 
individuals with PD, in conjunction with clinical data, can help 
doctors better assess the patient’s driving status, thereby enabling 
individuals with PD to drive more independently and confidently. 

2.2 Effects of Parkinson’s Disease on Driving 
PD is a non-lethal but irreversible neurodegenerative disease that 
presents with bradykinesia combined with either rest tremor, rigid-
ity, or both [10]. PD significantly impairs an individual’s driving 
performance, as demonstrated by numerous clinical studies. Re-
search indicates that people with PD exhibit compromised move-
ment, cognitive, and visual functions, resulting in irregular driving 
patterns such as slower reaction times, reduced speed, increased 
speed variability, and greater variability in lateral lane position 
[25, 57, 70, 71, 84]. These irregularities contribute to a 6.16-fold 
increase in on-the-road test failures and a 2.63-fold increase in sim-
ulator crashes compared to non-PD people [77]. Moreover, driving 
performance is further diminished by increased daytime sleepi-
ness and medication-related sleep attacks [23, 77]. Consequently, 
periodic evaluations of driving fitness for people with PD are nec-
essary, yet no uniform legal criteria exist for this purpose [70]. A 
recent study [76] proposed a driving fitness evaluation procedure 
involving multidisciplinary doctor participation and practical driv-
ing assessments. Existing research primarily focuses on statistical 
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PID Age Gender Disease Duration HY Scale UPDRS-III Education Yrs Holding Driver’s License Yrs Driving Status Participated EX # 

P1 62 M 2 years 3 32 10 27 stop driving 2 years 1 and 2 
P2 66 M 11 years 2.5 32 14 23 stop driving 17 years 1 and 2 and 3 
P3 53 M 6.5 years 2.5 27 24 22 1-2 times a month 1 and 2 
P4 63 M 12 years 1 17 14 31 everyday 1 and 2 and 3 
P5 55 M 3 years 1 10 16 27 everyday 1 and 2 and 3 
P6 61 M 5 years 2.5 42 13 33 3 times a week 1 and 2 and 3 
P7 52 F 1 years 1.5 25 18 16 2 times a week 1 and 2 and 3 
P8 64 M 7 years 2.5 23 11 44 5-6 times a month 1 and 2 
P9 65 M 11 years 2.5 24 14 14 stop driving 2 months 1 and 2 
P10 60 M 8 years 2 23 11 25 stop driving 2 years 1 
P11 61 M 10 years 2 36 12 21 stop driving 5 years 1 

Table 1: Demographic information of people with PD in our study. Participation is recorded in the last column. Experiment 
1 for preliminary study, 2 for data collection, and 3 for user study. We present the severity of PD in the form of Hoehn and 
Yahr Scale (HY Scale) [28] and Unified Parkinson’s Disease Rating Scale part three (UPDRS-III) [66]. The HY Scale is the most 
commonly used and widely accepted tool worldwide for describing the severity of PD, with scores ranging from 1 (mild) to 
5 (severe) [28]. Similarly, the UPDRS is a widely used clinical rating scale for PD, with its Part III (UPDRS-III) specifically 
designed for motor examination, where higher scores indicate greater motor impairment [29]. 

analyses of PD’s impact on driving performance and its correlation 
with neuropsychological test results [43]. In addition, people with 
PD also have unique emotional needs and varying reactions to user 
interfaces under different conditions [93, 94]. To our knowledge, 
our study is the first to analyze real-time driving patterns in peo-
ple with PD and develop a real-time monitoring system for their 
assessment. 

2.3 Monitoring and Alerting Systems for 
Driving 

The increasing frequency of serious car crashes has been linked 
to factors such as driver drowsiness, distraction, excessive mental 
workload, extreme emotions, and alcohol consumption, all of which 
significantly impair driving performance [31, 36, 40, 44]. To address 
these risks, advanced sensing systems have been developed to mon-
itor driving behavior and detect irregularities that may lead to 
accidents. These systems rely on diverse data sources, including ve-
hicle status parameters such as steering wheel input, pedal activity, 
speed, and lane-keeping data, accessed via the CAN bus [20, 41, 45]. 
Additionally, driver behavior metrics are captured using in-vehicle 
cameras, microphones, and seat-embedded sensors, while external 
environmental data is collected through vehicle-mounted cameras 
[14, 53, 62]. The acquired data is analyzed using rule-based mod-
els, mathematical frameworks, or machine learning techniques to 
assess driving states and detect irregular behaviors [55, 74]. 

When irregular driving patterns are identified, alerts are typ-
ically delivered to the driver through visual, auditory, or tactile 
cues. These notifications are displayed on head-up displays (HUDs), 
dashboards, or central control screens [37, 86, 91], ensuring timely 
responses to prevent potential accidents [72, 89, 90]. While existing 
systems focus on general driving populations, individuals with PD 
may exhibit unique driving patterns as their condition progresses. 

This work, inspired by current driver state detection technolo-
gies, aims to explore the design of a tailored detection system that 
accommodates the specific needs and challenges of drivers with 
PD. 

3 PRELIMINARY STUDY 
In this section, we present interviews with 11 people with PD 
and 4 PD specialists. Our goal was to identify existing practices, 
perceptions, and challenges of people with PD regarding driving, in 
order to provide guidance for design decisions in the development 
of PANDA. 

3.1 Interview of People with PD 
3.1.1 Participants. We conducted semi-structured interviews with 
11 people with PD (Table 1). Among the 11 participants (10 male, 1 
female), they have an average age of 60.2, an average duration of 7.0 
years of PD, and an average year of 25.7 in driving. At the current 
stage, six of them still drive occasionally, and five of them stopped 
driving because of PD. They have an average Hoehn and Yahr Scale 
(HY Scale) of 2.1 and an average of Unified Parkinson’s Disease 
Rating Scale, Part III (UPDRS-III) of 26.5 [66], where HY Scale is 
the most commonly used and widely accepted tool worldwide for 
describing the severity of PD, with scores ranging from 1 (mild) 
to 5 (severe) [28], and the UPDRS is a widely used clinical rating 
scale for PD, with its Part III (UPDRS-III) specifically designed for 
motor examination, where higher scores indicate greater motor 
impairment [29]. Participants in this study were compensated in 
local currency which is equivalent to $40 USD. The recruitment and 
study procedure was approved by the local hospital’s Institutional 
Review Board (IRB). The interview took approximately 20 minutes. 

3.1.2 Procedure. The questions began with inquiries about changes 
in driving ability since the onset of the illness, their current driv-
ing status, and whether they had sought any assistance. For those 
who had stopped driving, we explored the reasons for cessation, 
the impact of quitting, and their willingness to drive again. Next, 
we detailed current methods for assessing driving in people with 
PD and asked participants to evaluate their feasibility based on 
their personal experiences, explaining their reasons. Finally, we 
presented our study’s objectives, shared potential design ideas, and 
invited participants to contribute to the design principles and offer 
their suggestions. 
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PID Gender Specialty Years of Experience Age 

P1 M Specialist in Neurology 21 46 
P2 F Specialist in Neurology 11 38 
P3 F Specialist in Neurology 30 52 
P4 F Specialist in Neurology 8 38 

Table 2: Demographic information of PD specialists in preliminary study 

3.2 Interview of PD Specialists 
To understand the neural mechanisms underlying PD and the chal-
lenges people with PD face while driving, we conducted interviews 
with PD specialists. 

3.2.1 Participants. We recruited four PD Specialists (3 Female, 1 
Male) with an average age of 43.5 from local hospitals, all of whom 
specialize in neurology (Table 2). They had an average experience 
in PD for 18.5 years. 

3.2.2 Procedure. Our preliminary interview centered on the fol-
lowing key areas: 1) The symptoms most affecting the driving 
abilities of individuals with PD, their impact on performance, and 
specific road situations or emergency events that present signifi-
cant challenges. 2) The common responses specialists provide to 
patients’ inquiries about driving and the advice given. 3) The ef-
fects of various medications on driving performance, including 
the duration of their impact and potential side effects that could 
influence driving safety. 4) The current methods used for assessing 
driving performance in people with PD, from the perspective of 
PD specialists. 5) The effectiveness of our current design principles 
and any additional design factors specialists would suggest. 6) The 
most effective notification strategies and optimal alert buffer time 
for people with PD. The interview took around 15 minutes. 

3.3 Data Analysis 
We recorded the audio during the interviews and used handwrit-
ten notes to record important information. After conducting the 
interviews, the findings were analyzed using thematic analysis [11]. 

Firstly, all audio recordings were transcribed into text and cross-
checked against handwritten notes to serve as the data input. Sec-
ondly, two researchers independently employed thematic analysis 
to identify, analyze, and interpret themes in the data. Any con-
flicts in theme identification were resolved through discussion and 
consensus. In this study, we use Cohen’s Kappa coefficient [61] to 
quantify the degree of agreement between two researchers. The 
coefficient ranges from -1 (indicating perfect disagreement) to +1 
(indicating perfect agreement), with values closer to +1 reflecting 
stronger reliability. The analysis of interviews with people with PD 
focused on three themes: demand, factors impacting driving, and 
challenges (as shown in Table 6 in Appendix). The Cohen’s Kappa 
coefficient for inter-rater reliability between the two researchers 
was 0.727. The analysis of interviews with PD specialists focused 
on three themes: current solutions, factors impacting driving, and 
challenges (as shown in Table 7 in Appendix). The Cohen’s Kappa 
coefficient for inter-rater reliability between the two researchers 
was 0.794. 

3.4 Findings 
After synthesizing the interview results and incorporating knowl-
edge from previous work, the preliminary study identified several 
challenges and key design principles for a PD driving assistance 
system (Figure 3). 

3.4.1 The ability to drive is crucial for individuals with PD, yet there 
are currently no effective objective assessment methods available. 
Maintaining the ability to drive is crucial for preserving indepen-
dence and plays a significant role in the self-esteem of people with 
PD. Many individuals with PD express a strong desire to continue 
driving, as it significantly enhances their convenience and quality 
of life. For instance, P10, who experiences Freezing of Gait (FoG), a 
PD symptom characterized by brief episodes of inability to move 
or very short steps, typically occurring when starting to walk or 
turning [65], stated, "I need to go to the market 3-4 times a week. 
Walking there is very challenging for me, but driving makes it much 
easier to get there." Surprisingly, despite PD impairing his foot move-
ment and causing difficulty with walking, he is still able to operate 
the pedals as if he were unaffected. This underscores how driv-
ing remains an essential aspect of daily life for many people with 
PD. However, from the perspective of PD specialists, the primary 
concern is helping patients maintain essential functions such as 
walking steadily and standing up securely. Most specialists do not 
consider driving ability a key aspect of evaluation in clinical set-
tings. Regarding policy issues, there are no uniform legal criteria to 
guide people with PD and doctors on assessing driving fitness [70]. 

3.4.2 The driving status of people with PD can change rapidly and is 
influenced by a variety of factors. Real-time and continuous driving 
assessment is urgently needed. Everyone’s driving status is affected 
by road conditions, weather, and mood. While people with PD 
also experience these influencing factors, they are also affected by 
additional issues. Long-term levodopa therapy can lead to the ’on-
off’ phenomenon, characterized by fluctuations in the severity of 
PD symptoms [58]. Additionally, medication side effects often cause 
drowsiness in people with PD [26], further impacting their driving 
ability. P9 requested to discontinue the experiment in the afternoon, 
stating, "I always feel sleepy after noon, and my condition is better in 
the morning. I’ll return to complete the experiment another morning." 
P3 reported feeling very unwell after the test, mentioning, "The 
effect of my medication has worn off; I need to take a bit more." PD 
can cause photophobia [35], making it difficult for some patients to 
drive safely when the sun is strong. P1 drove with his eyes slightly 
open and said, "It’s hard for me to look up when the light is strong 
since I developed PD." Given these real-time influencing factors, a 
single assessment cannot accurately represent the daily driving 
conditions of people with PD. Therefore, real-time and continuous 
assessment is urgently needed (Figure 3). 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Wen et al. 

Figure 3: From interviews of people with PD and PD specialists and existing literature, we identify six critical design principles. 
This figure provides an overview of these principles. 

3.4.3 Given the unique challenges faced by people with PD, design-
ing an irregular driving alert system tailored to their needs requires 
careful exploration and thoughtful consideration. PD can impair both 
cognitive and visual functions in patients [1, 84]. Designing visual 
and auditory alerts that effectively capture attention without dis-
rupting normal driving is still an area of active research (Figure 3). 
P5 shared, “Since my diagnosis, I’ve noticed that my reactions have 
slowed and handling multiple tasks simultaneously has become more 
difficult.” Our interviews revealed that people with PD often display 
similar driving patterns due to shared symptoms, such as delayed 
responses, unintended lane deviations, shaky steering from hand 
tremors, and weakened pedal control (Figure 3). These findings 
align with existing literature [56, 88]. We speculate that alerting 
methods may need to differ across various driving scenarios to en-
sure that the system remains sensitive during critical events while 
avoiding excessive notifications (Figure 3). Identifying which spe-
cific situations require the most urgent alerts remains a subject for 
further research. Moreover, designing an alert system for people 
with PD must address privacy and social considerations. The dis-
ease often brings about psychological challenges [27], making it 
crucial for any system to support drivers while preserving their 
dignity. This includes offering features that prevent the disclosure 
of sensitive alerts to other passengers, thereby maintaining both 
their self-esteem and driving independence. Regarding the optimal 
time buffer for deploying system alerts, after a detailed explanation 
of the design rationale for the buffer, PD specialist P4 noted: "A 
10-second buffer is optimal. If the buffer duration is too long, it may 
delay the best opportunity to avoid a hazard, while a buffer that is 
too short requires excessively frequent validation." 

4 EXPERIMENTAL SETUP AND DATA 
COLLECTION 

Drawing on insights from the preliminary study, we identified the 
critical importance and inherent challenges of driving for individ-
uals with PD. This understanding informed the development of 
a real-time, continuous monitoring system. To support this, we 
created a simulated driving environment and designed experimen-
tal paradigms that closely mirror real-world driving scenarios. We 
collected driving behavior data from both individuals with and 

without PD, and used this data to train a machine learning model 
capable of detecting irregular driving patterns associated with PD. 

4.1 Driving System Setup 
This experiment set up a simulated driving system including an 
eye-tracker (Tobii Pro X3-120), steering wheel (Logitech G29), and 
pedals (accelerator, brake, and paddle shifters), as shown in Figure 1. 
The eye-tracker captured the sight changes during driving, such as 
eye movement and fixation state, with a 120Hz sample rate. These 
changes may indicate some reactions or human perceptions while 
driving. Before each experimental scenario, the eye tracker was 
calibrated. The steering wheel and pedals recorded the rotation 
angle and pedaling amplitude, providing detailed motion data of 
hand and foot movements, with a sampling rate of 20Hz. 

The simulated driving environments, along with the tasks, were 
selected in a software which is specially designed for driving test 
training purposes named City Car Driving2 , using a standard left-
hand driving automatic sedan. This software vividly renders many 
real-life driving elements, including the dashboard, traffic lights, 
traffic signs, pedestrians, other vehicles, and the surrounding driv-
ing environment. 

4.2 Participants 
In the data collection phase, we recruited 22 participants: 9 people 
(8 male and 1 female) diagnosed with PD with an average age of 
60 (PD 1-9) and 13 non-PD participants to participate in the experi-
ment (NC 1-13); their demographic information is shown in Table 
3. Because age can significantly impact one’s motor abilities, we 
recruited participants of similar age in the experiment. We specifi-
cally included non-PD participants to provide a baseline of typical 
driving patterns. This baseline helped us compare with individu-
als with PD to identify both similar and irregular patterns, which 
informed the development of the subsequent clustering model. 

The control group comprised retirees from a research institute 
and residents in the surrounding area, while people with PD were 
recruited from the neurology department of a hospital. The re-
cruitment criteria for the participants included the following five 

2https://citycardriving.com/ 

https://2https://citycardriving.com
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Individuals with PD Non-PD participants Sig 
n (total n = 22) 9 13 n/a 
Demographics 
Women # (%) 1 (11%) 5 (38%) n/a 
Men # (%) 8 (89%) 8 (62%) n/a 

Age yrs (std) 60.1 (5.0) 61.38 (5.8) p = 0.71 
Education yrs (std) 14.9 (3.9) 14.1 (2.3) p = 1.0 

Obtain Driver’ License yrs (std) 26.3 (8.6) 24.6 (4.8) p = 0.76 
Clinical Characteristics 
Disease Onset yrs (std) 6.5 (3.9) 0 (0) p < 0.001 

UPDRS Part III [66] avg (std) 25.8 (8.7) 0 (0) p < 0.001 
Hoehn-Yahr [8] avg (std) 2.1 (0.7) 0 (0) p < 0.001 

Table 3: Summary of the demographic and clinical information of the 22 participants in this study. 

requirements: 1) has a motor vehicle driving license, 2) has more 
than five years of driving experience, 3) no motion sickness, 4) no 
recent use of driving performance-related drugs, 5) The HY scale of 
people with PD does not exceed 3, while that of non-PD participants 
does not exceed 0. 

People with PD were compensated in local currency equiva-
lent to $40 USD, which included payment for their participation in 
preliminary study, as mentioned in Section 3.1.1. Non-PD partici-
pants in this study were compensated in local currency, which is 
equivalent to $15 USD. The recruitment and study procedure was 
approved by the local hospital’s IRB. Each participant’s engagement 
took approximately 50 to 70 minutes. 

4.3 Procedure 
Our experiment included preparatory work and three scenarios. 
During the intermissions between each scenario, participants were 
provided enough rest until they reached optimal conditions. Af-
ter each scenario, participants were asked to complete self-rating 
questions about their driving performance and the difficulty of the 
scenario settings. 

4.3.1 Preparatory work. Upon arrival at the lab, the participants 
were asked to sign an informed consent form. Next, we recorded 
the basic information and driving experience of the participants. 
We then set up a training scenario to help them become familiar 
with our system. The training scenario continued until participants 
indicated that they were ready for the formal driving tasks. Partici-
pants were asked to drive safely, obey traffic rules, and adhere to 
their typical driving habits in all scenarios. 

4.3.2 Driving scenarios. Scenario 1. In this scenario, participants 
engaged in free driving in a city with a speed limit of 40km/h for 
approximately 10 minutes. 

Scenario 2. The scenario section was set up on a straight high-
way segment with a speed limit of 120km/h for approximately 10 
minutes. This scenario was mainly a one-way, three-lane road. We 
implemented various emergency driving events to increase the 
difficulty and test the driving abilities of people with PD. 

Scenario 3. The final scenario followed the same route as Sce-
nario 1 but included emergency driving events. Participants were 
required to ensure safety by avoiding collisions with other vehicles 
and pedestrians crossing the road. 

We employed a Latin Square design to minimize the impact of 
the experimental sequence on the results [30]. Specifically, we used 
three experimental sequences: Scenario 1, Scenario 2, and Scenario 
3; Scenario 2, Scenario 3, and Scenario 1; and Scenario 3, Scenario 1, 
and Scenario 2. Each group (PD and non-PD) followed its respective 
sequence in turn, ensuring balanced exposure to all experimental 
conditions within each group. All participants completed the three 
sequences except for P9, who began with Scenario 2 but had to 
withdraw from the experiment midway due to poor condition. 

4.3.3 Follow-up Interview. We further conducted a follow-up inter-
view at the end of the data collection. Common questions included 
inquiries about the adaptability to the simulated driving equipment 
and differences between simulated and real-world driving. Non-
PD participants were asked about the frequency of encountering 
these emergency driving situations in real life and the level of diffi-
culty they experience when faced with them. For people with PD, 
they were asked to report any irregular driving behaviors they had 
noticed during real-world driving. 

4.4 Data Processing Pipeline and Feature 
Extraction 

4.4.1 Data collection and verification. To collect the sensors (eye-
tracking, steering wheel, and pedal sensor) data, we created a 
Python program on the computer. From our testing, we observed 
that eye movement data was occasionally inaccurate, with peri-
ods of reduced accuracy and decreased sampling rates. This issue 
was particularly pronounced in individuals with smaller eyes (PD1, 
PD9, NC7, and NC8). In real driving scenarios, head movements 
are more pronounced, and bright lighting conditions frequently oc-
cur, further complicating the collection of accurate eye movement 
data. To address this issue, we implemented a data verification step 
and introduced a 10-second buffer (as discussed in Section 3.4.3) to 
temporarily store data from each channel. Once the buffering was 
complete, we performed checks for timestamp, non-null values and 
verified the sampling rate to ensure data integrity. Across all 22 
participants, the system tracking data experienced a loss of 30.8% 
during the 700-minute experiment. So, we reduced the weighting of 
eye movement parameters in this study, utilizing fewer eye features 
to train the model. 
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Figure 4: We set up two driving environments to collect real-time driving data from people with PD and non-PD participants: a 
city scene (shown on the left) and a highway scene (shown on the right). 

4.4.2 Data analysis. To gain a deeper understanding of user be-
havior, the researcher reviewed the driving behavior video with 
the participants after they completed a stage of driving tasks. Dur-
ing this review, participants were asked to report their driving 
intentions, particularly during incidents such as accidents or traffic 
violations [19]. This section was divided into three main parts: a) 
Differences in data from each channel across various participants, b) 
Differences in behavioral performance, and c) Subjective intention 
and self-assessment of driving ability. 

To summarize the driving ability of people with PD, particularly 
the stability of hand and foot control, we plotted the sensors’ raw 
data for PD1, PD2, PD3, and NC1 during the straight-line driving 
stage (excluding crash incidents) in Figure 5. Signal diagrams for all 
participants are provided in the Appendix. The x-axis in the figure 
represents time. The duration of the removed collision segments 
varies, leading to differences in the displayed time lengths. The 
y-axis represents the steering wheel angle, accelerator pedal depth, 
and brake pedal depth, with a consistent scale across all individuals. 

Differences in data from each channel across various par-
ticipants 

• Steering data (excluding crash incidents): In our straight-
line driving scenario, the lane is not perfectly straight. Conse-
quently, we observed that non-PD individuals continuously 
adjust the steering wheel to fine-tune the car’s direction. By 
comparing steering data from people with PD and non-PD 
individuals, we found that some people with PD can control 
the steering wheel quite accurately (e.g., PD2, Figure 5) and 
avoid accidents (e.g., PD5, Figure 9 in Appendix). However, 
other people with PD exhibit noticeable differences in their 
steering control. There are two main patterns: 1) PD1 demon-
strates large steering wheel movements. In the interview, 
PD1 explained that he made conscious corrections when 
the car deviated from the lane center. However, due to PD-
related impairments, he struggled to stop steering in time 
during turns, leading to over-correction in the opposite di-
rection. This caused the vehicle to sway violently, increasing 
the times of a collision. 2) PD3 exhibited excessively rigid 
steering wheel operations. During data collection, he was 
transitioning from the "on" phase to the "off" phase of medica-
tion, showing severe muscle rigidity in both hands. Although 
PD3 did not crash as frequently as PD1, he struggled to make 

precise adjustments to the steering wheel, resulting in fre-
quent boundary line violations during the simulation. In the 
subsequent interview, PD3 also reported that his current 
condition was poor. 

• Throttle data (excluding crash incidents): Through on-
site observations and data analysis, we identified distinct 
patterns in how people with and without PD operated the 
throttle during straight-line driving—a task where main-
taining a consistent speed is crucial to prevent accidents or 
being rear-ended. Two irregular throttle control patterns 
emerged. 1)In throttle modulation, NC1 frequently adjusted 
the throttle by alternating between pressing and releasing 
the pedal to maintain a stable speed, a behavior that PD2 
could also replicate. In contrast, PD1 showed a very different 
pattern, holding the throttle in a steady, continuous press 
from shallow to deep over extended periods. This resulted 
in the car gradually accelerating until it eventually collided 
with an obstacle. In the follow-up interview, PD1 confirmed 
this behavior, attributing it to severe leg stiffness and slow 
movement, which were evident in his poor performance on 
the foot-tapping test, a part of the UPDRS-III assessment. 
This made it difficult for him to modulate the throttle fre-
quently. 2)In throttle depth, PD3 never pressed the throttle 
beyond halfway throughout the session. He explained that 
his right leg was too slow and weak to apply sufficient force. 
Interestingly, non-PD participants NC2, NC7, and NC8 ex-
hibited similar throttle patterns, although they attributed 
this to personal driving habits and differences in height. The 
accuracy and generalizability of this irregular pattern require 
further research. 

• Brake data (excluding crash incidents): We identified 
an irregular driving pattern in braking among people with 
PD. In straight-line driving scenarios, drivers often need to 
frequently apply the brakes to avoid sudden lane changes 
by other vehicles or multiple traffic incidents ahead. Data 
shows that most non-PD individuals frequently brake to 
keep their speed within a safe range and to avoid potential 
dangers. However, PD1 applied the brakes only once during 
nearly four minutes of straight-line driving. He rarely en-
gaged in proactive deceleration, which contributed to the 20 
collisions he experienced. In the subsequent interview, PD1 
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Figure 5: This chart compares the differences in the steering wheel, throttle, and brake data during straight-line driving among 
four participants: PD1, PD2, PD3, and NC1. (Data for all participants can be found in the Appendix.) In the chart, the horizontal 
axis represents time (in seconds), and the vertical axis represents steering wheel angle, throttle depth, and brake depth. The 
zero point on the vertical axis (center of the y-axis) indicates a steering wheel angle of 0, with positive values representing a 
right turn and negative values representing a left turn. For the throttle and brake, the highest values (at the top of the y-axis) 
represent fully released pedals, while lower values indicate deeper pedal engagement. 

mentioned that he struggled to switch his right foot between 
the accelerator and brake pedals. 

5 PANDA: Parkinson’s Assistance and 
Notification Driving Aid 

Based on the driving data collected from the previous section and 
informed by conclusions drawn about effective alert strategies, we 
developed PANDA, a system designed to detect irregular driving 
behaviors in people with PD and provide early warning alerts. 
We use PANDA as a technology probe to further understand the 
experiences and design implications of real-time alert systems for 
individuals with PD. 

5.1 Drive Ability Detection 
5.1.1 Feature extraction. We used a sliding window method to 
process the multi-modal time-series data, with a window size of 10 
seconds and an overlap of 50 percent. This configuration was deter-
mined based on our interview results. To balance between missing 
the optimal reminder time and having reminders too frequently, 
people with PD found that a 10-second window is ideal. While we 
fully respected their input, we used 10 seconds as a baseline and 
explored other parameter settings. To accommodate the real-time 
requirements of the system, we initially tested four different slid-
ing window lengths: 1, 3, 5, and 10 seconds, with each window 
overlapping by half of its length. 

Based on the clustering results, we found that the 10-second 
sliding window provided the most accurate detection of irregular 
behaviors, making it the optimal choice for marking such events. 
Consequently, we selected a 10-second window for the final analysis. 
The features extracted from the eye tracker and pedal data provide 
a comprehensive assessment of the participant’s visual-motion 
coordination and control strategies during tasks. These metrics can 
be used to evaluate attention, decision-making, reaction speed, and 
overall control efficiency, making them valuable for research in 
cognitive psychology, human factors, and driver behavior analysis. 

Eye Movement Features. The eye movement data provides in-
sights into the participant’s gaze behavior and eye movement dy-
namics. The key features extracted from this data include: 

• Average Eye Speed (X-axis, Y-axis, Trajectory): The av-
erage speed of the eye. This reflects how fast the eye moves 
on the screen over time, which is important for analyzing 
attention shifts. Research has indicated that people with PD 
may show different eye-controlling abilities between hori-
zontal and vertical movement. These differences may be an 
indicator of driving ability. 

• Maximum Eye Speed (X-axis, Y-axis, Trajectory): The 
maximum speed of the eye. This reflects the fastest eye move-
ment on the screen, which is important for analyzing atten-
tion shifts, indicating the ability to catch the emergencies 
that occur on the road. 
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Features Descriptions 
Steering-based Features 

Steer Fluctuation Sum (Sum & AbsSum) The total sum or absolute value sum of steering fluctuation. 
Fluctuation Times The number of times the steering crosses zero. 

Volume per Fluctuation The total steering volume of one fluctuation. 
Max Fluctuation The maximum absolute value of steering changes. 

Fluctuation Speed (Mean & Max) Average and peak speed of steering adjustment. 
Pedal-based Features 

Duration The total time the throttle and brake were engaged. 
Throttle-Brake Ratio The ratio of throttle to brake duration. 

Brake Times The number of distinct braking events. 
Throttle AUC The sum of throttle values over time. 

Eye Movement-based Features 
Average Eye Speed The average speed of the eye (X-axis, Y-axis, Trajectory). 
Maximum Eye Speed The maximum speed of the eye (X-axis, Y-axis, Trajectory). 
Gaze Area Ratio Ratio between gaze area and screen area. 

Table 4: Features explored in this study 

• Gaze Area Ratio: This is the ratio of the total area covered 
by the participant’s gaze to the total screen area (1920 × 1080). 
This feature estimates how much of the visual space the 
participant engaged with and can reflect attentional spread 
or focus during the task. 

Steering Features. The steering data reflects the user’s control 
over the vehicle’s direction and their ability to maintain steady 
movements or adapt to changing circumstances. Key extracted 
features are: 

• Steer Fluctuation Sum (Sum and Absolute Sum): The 
total sum of steering fluctuation. This provides a relative 
fluctuation volume measuring steering activity, calculating 
the actual offset of the steering wheel from the beginning 
to the end of a slice. The absolute values of steering indi-
cate the total fluctuation volume of a segment. This reflects 
the overall volume of steering corrections and adjustments, 
irrespective of direction. 

• Fluctuation Times: The number of times the steering crosses 
zero (i.e., changes direction). This measures the variability of 
steering, which is important for identifying smooth versus 
erratic driving behavior. 

• Volume per Fluctuation: The ratio of total steering volume 
to the number of fluctuation times. It represents the average 
amount of steering input per directional change, which can 
provide insights into steering efficiency. 

• Max Fluctuation: The maximum absolute value of steering 
changes. This value identifies the largest steering adjustment 
made, which could indicate extreme maneuvers or correc-
tions during the task. 

• Fluctuation Speed (Mean and Maximum): The average 
volume of steering adjustments over time. It provides a sense 
of how frequently and intensely the participant adjusts their 
steering. The peak fluctuation speed at which steering ad-
justments occur. This feature can indicate moments of rapid 
directional changes, reflecting reaction speed or compen-
satory behavior. 

Pedal Features. The pedal data (brake and throttle) provides 
insights into the participant’s acceleration and deceleration behav-
ior, which is critical for understanding their control strategy and 
response to the environment. Extracted features include: 

• Duration (Throttle and Brake): The total time the throttle 
and brake were engaged, representing the duration of accel-
eration and deceleration. A longer throttle duration indicates 
prolonged acceleration phases. 

• Throttle-Brake Ratio: The ratio of throttle to brake du-
ration. This feature is useful for understanding the balance 
between acceleration and deceleration. A high ratio suggests 
aggressive driving, while a low ratio could indicate cautious 
behavior. 

• Brake Times: The number of distinct braking events. This 
is calculated by counting the times when the participant lifts 
off the brake completely between braking events, reflecting 
braking frequency. 

• Throttle Area Under the Curve (Throttle AUC): The 
sum of throttle values over time, indicating the total amount 
of throttle applied during the session. Since the behavior 
of engaging the throttle is not as distinct as braking, with 
clear phases of pushing and releasing, it involves continu-
ous engagement. Therefore, we use the throttle AUC (Area 
Under the Curve) to indicate changes in throttle behavior. 
This value has a strong connection with the speed and accel-
eration. A higher AUC reflects more intensive acceleration 
behavior. 

5.1.2 Clustering of irregularities. Data Preprocessing. Preprocess-
ing steps were undertaken to ensure data quality and consistency in 
preparing the driving-related time-series data for clustering analy-
sis. Normalization of feature values was performed using min-max 
scaling, which transformed all features to a common scale between 
0 and 1. This step was critical for ensuring that no feature with a 
larger range disproportionately influences the clustering results, 
especially in distance-based clustering algorithms like KMeans. 
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Figure 6: We investigated the effectiveness of visual alerts across three dimensions: position, information presentation form, 
and alert body part. The image illustrates our design setting: for the position, we evaluated the HUD, dashboard, and car center 
control screen from left to right in (a); for information presentation form, we used red warning triangles with graphic symbols, 
text only, and red warning triangles with text, from left to right in (b); and for alert content, we focused on hands, feet, and 
eyes, from left to right in (c). 

Clustering with KMeans. KMeans clustering was selected as 
the primary method for grouping driving behaviors based on feature 
similarities. Specifically, the dataset was divided into two clusters, 
hypothesized to represent regular and irregular driving patterns. 
The number of clusters (n=2) was chosen based on the need to 
distinguish between these two behavioral groups. The KMeans 
algorithm works iteratively by assigning data points to clusters 
based on proximity to centroids, which are recalculated to minimize 
intra-cluster variance. After clustering, each sample was labeled 
with its corresponding cluster assignment, enabling further analysis 
of the driving patterns associated with each group. 

Model Persistence and Prediction. To ensure that the cluster-
ing model could be reused for future analyses without retraining, 
the KMeans model was saved using a serialization method. This al-
lowed the trained model to be stored and later reloaded for real-time 
application or batch prediction of new driving data. This approach 
facilitates the dynamic use of the model in real-world scenarios 
where continuous assessment of driving behavior may be required. 
The stored model was later utilized to predict the cluster assign-
ment of specific test samples, confirming the model’s reliability in 
detecting irregular driving patterns. 

5.2 Alert Strategy Design 
In the preliminary study (Section 3.4.3), we explored the design 
space of alert methods for a real-time driving reminder system in 
collaboration with individuals with PD. Our primary focus was on 
how to design alerts through three channels: visual, auditory, and 
tactile for people with PD. We examine which design elements need 
to be considered for these channels and how to differentiate the 
design of alerts for various driving scenarios. 

In our visual alert design, we considered three key dimensions: 
position, information presentation form, and alert content. For 
position, we designed alerts placed in the head-up display (HUD) 
[47], on the dashboard [7], and on the car center control screen [51]. 
For the information presentation form, we designed alerts with text 

only, red warning triangles with text, and red warning triangles 
with graphic symbols [86]. For alert content, we included alerts for 
hands, feet, and eyes. Our visual alert design is shown in Figure 6. 

As for audio alert design, we included three types of audio 
alerts under various common on-road situations in both healthy 
and elderly drivers with diseases: a warning sound only, a warning 
sound with what to do and a warning sound with both what to do 
and why it should be done [46]. The on-road situations included 
starting, encountering traffic signals, making turns, lane keeping, 
overtaking, speed control, backing up, and curving, according to 
this paper [19]. 

Regarding tactile alert, nearly all participants ruled out the 
use of the tactile channel. As P4 mentioned: "The tactile channel 
cannot convey as much detailed information as the visual and auditory 
channels. When I receive a tactile alert, I find it difficult to discern 
what action is required of me." 

In the co-design process with people with PD, we identified 
two key driving scenarios that necessitate alerts. The first scenario 
involves detecting irregular driving patterns in people with PD; 
timely reminders in these instances can help them adjust their 
physical state or decide to make an emergency stop, thus preventing 
accidents. The second scenario pertains to situations requiring 
complex information processing or those with a higher risk of 
traffic accidents, where scenario-specific alerts are crucial to help 
the driver focus on critical issues. 

Building on the insights from the preliminary interviews and 
the alert design space, we developed three modes in PANDA for the 
subsequent user study: the visual alert test mode, the audio alert 
test mode, and the system experience mode. The visual alert test 
mode randomly presents nine types of visual alerts (three positions 
× three alert contents) every 30 seconds, as described in Section 5.2. 
The audio alert test mode plays three types of audio alerts for 
common on-road situations, also detailed in Section 5.2. The system 
experience mode automatically detects irregular driving patterns 
and presents alerts during free driving. To protect users’ privacy, 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Wen et al. 

P2 P4 P5 P6 P7 Average STD 
How much do you like this visual cue? Please rate from 1 (dislike very much) to 5 (like very much). 

HUD 3 4 4 3 5 3.8 0.8 
Dashboard 4 3 2 1 4 2.8 1.2 

Center Control Screen 5 2 3 1 3 2.8 1.3 
To what extent do these visual cues affect driving? Please rate from 1 (not affected at all) to 5 (very affected) 

HUD 1 2 1 3 2 1.8 0.7 
Dashboard 1 3 3 4 1 2.4 1.2 

Center Control Screen 1 4 2 5 4 3.2 1.5 

Table 5: Result for alert preference study Scenario 1 on 5-point Likert scale. More people preferred having visual alerts displayed 
on the HUD, and most believed that presenting visual alerts on the HUD would minimally impact normal driving. 

we designed a feature that allows them to turn alert notifications 
on or off at any time. 

6 User Study 
After building PANDA, we designed this experiment to validate 
its usability through user study with 5 people with PD. We use 
PANDA as a technology probe to explore the alert preferences and 
driving experiences of individuals with PD, as well as the design 
implications for a real-time driving alert system. 

6.1 Participants 
We recruited 5 people with PD (P2, P4, P5, P6, and P7 in Table 1) 
took part in this user study. Participants were compensated in local 
currency equivalent to $40 USD in user study. The recruitment and 
study procedure was approved by the local hospital’s IRB. Each 
study took about 70 minutes. 

6.2 Study Procedure 
The user study procedure contains three phases: 1) Real-time ex-
perience with PANDA, 2) Alert method preference, and 3) Semi-
structured interview. 

6.2.1 Phase 1: Real-time experience with PANDA. [30 Minutes] 
Participants drove with PANDA activated. After the experience, 
they were asked the following questions: How satisfied were they 
with the system? After receiving an alert, could they recognize 
their issue and subsequently adjust to a better driving state? Which 
three driving situations did they prefer to use this system in? Which 
three driving situations would they avoid using this system? 

6.2.2 Phase 2: Alert method preference. Scenario 1 [10 Minutes] 
Drivers navigating city roads encountered nine types of visual 
alerts (three positions × three alert contents), which appeared ran-
domly every 30 seconds. Afterward, their preferences regarding 
the position of the visual alerts and the distracting degree of these 
alerts were measured using a 5-point Likert scale [39]. Several 
questions were posed, including whether they felt different alert 
contents were necessary and why, as well as their preferred format 
for presenting alert information. 

Scenario 2 [10 Minutes] Participants drove on city roads and, 
while performing each on-road situation, encountered three dif-
ferent types of audio alerts in a Latin Square sequence. Afterward, 

they were asked to rank their preference among the three types of 
audio alerts. 

6.2.3 Phase 3: Semi-structured interview. [20 Minutes] The inter-
view explored two main questions: First, are driving statistical 
parameters related to hand, foot, and eye movements useful for 
people with PD and how should they be presented? Second, in 
which scenarios would people with PD prefer to use our system, 
such as driving alone, driving with others, highway driving, or city 
driving? 

6.3 Data Analysis 
All information from the user study was meticulously documented, 
and the entire study was fully recorded in audio. The semi-structured 
interviews in the user study were analyzed using thematic anal-
ysis [11]. Firstly, all audio recordings were transcribed into text 
and cross-checked against handwritten notes to serve as the data 
input. Secondly, two researchers independently employed thematic 
analysis to identify, analyze, and interpret themes in the data. Any 
conflicts in theme identification were resolved through discussion 
and consensus. The analysis focused on two key themes: feedback 
of the system and acceptance of scenarios. The Cohen’s Kappa co-
efficient for inter-rater reliability between the two researchers was 
0.667. Further details on the thematic analysis process are provided 
in Table 8 in the Appendix. 

6.4 Findings 
6.4.1 Insights for overall experience with real-time driving alert sys-
tem. A real-time driving alert system is helpful for people 
with PD. When they receive an alert, they can quickly adjust 
their driving behavior, reducing the risk of potential dangers. 
During the real-time alert phase, every person with PD received 
at least one real-time warning. More than half of these alerts were 
deemed effective by the patients, who reported issues such as diffi-
culty maintaining speed or unstable steering. All participants found 
the system highly useful. Since people with PD experience more 
pronounced fluctuations in their physical condition compared to 
non-PD individuals, the system helps ensure their safety. P6 noted, 
"people with PD have noticeable on-off period effects. During the ’on’ 
period, I can operate the car well, but in the ’off’ period, my body 
becomes stiff, and movement is difficult. Since it’s impossible to predict 
when the switch will occur, this system helps me assess my physical 
state and take necessary actions in advance." P7 mentioned, "Because 
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Figure 7: In alert preference study Scenario 2, we evaluated the preferences of people with PD for audio alerts during different 
driving tasks. Upon entering each driving scenario, participants were asked to choose between short, simple audio alerts ("what 
to do") and longer, more detailed audio alerts ("what to do and why it should be done"). The results showed that people with PD 
consistently preferred detailed audio alerts ("what to do and why it should be done") across all driving tasks. 

I need to take medication frequently, the system’s alerts are helpful 
when I start to feel drowsy." 

6.4.2 The privacy protection feature is especially beneficial for peo-
ple with PD. People with PD prefer to use the real-time driving moni-
toring system when driving alone rather than when they have passen-
gers in the car. When driving alone, there is no co-driver to assist 
with observations and reminders, which can increase the risk of 
drowsiness and distraction. Conversely, having others in the car 
can make triggering reminders more problematic. It may reveal 
personal information and reduce self-confidence. P5 shared, “If the 
system issues an alert while my boss, colleagues, or friends are in 
the car, everyone will know about my condition. It’s embarrassing, 
and they might even tell others about the warnings, which would be 
humiliating.” P4 noted, “My family members often give me driving 
instructions when they’re in the car. Frequent reminders could provide 
them with more reasons to criticize me, leading to potential conflicts.” 

6.4.3 Alert method preference. Insight 1: Visual alerts should 
be placed closer to the driver’s line of sight, primarily using 
graphical information. It is helpful to provide individuals 
with PD precise information about which specific body parts 
require adjustment. 

As is shown in Table 5, more participants preferred having vi-
sual alerts displayed on the HUD, with an average rating of 3.8. 
Additionally, most people believed that presenting visual alerts on 
the HUD would minimally impact their normal driving, giving it 
an average score of 1.8. The placement of visual prompts should be 
closer to the driver’s line of sight. For individuals with PD, head and 
eye movement capabilities are generally weaker, and information 
processing speed is slower compared to non-PD individuals. Posi-
tioning visual prompts closer to the driving line of sight ensures 
that people with PD do not become distracted by having to look 
away from the road, which could lead to more severe driving issues. 
P4 mentioned: "When looking at the dashboard alerts, I need to lower 
my head and shift my gaze from directly ahead to the dashboard. 
When checking alerts on the car’s central display, I have to adjust my 
gaze to the right and downward." This opinion aligned with survey 
results, more people believed that HUD was a better method of 

providing prompts and results in the least amount of distraction 
while driving. 

Incorporating information about which body part (hand, foot, or 
eyes) needs more attention in the alerts was highly appreciated by 
all people with PD. They generally felt that identifying the specific 
body part requiring improvement helped them better direct their 
physical adjustments. Regarding the format of the information 
presentation, all participants preferred red warning triangles with 
graphic symbols over red warning triangles with text, with text only 
being the least effective. P6 remarked, "Understanding text takes 
more time than interpreting icons, and reading text while driving 
can disrupt normal driving. This system should include training for 
drivers to become familiar with these icons before implementation, 
and during driving, different shapes and positions of icons can be used 
to differentiate various alert messages." 

Insight 2: When designing the audio alert content, fac-
tors such as driving speed, frequency of occurrence, and the 
level of risk in each driving scenario should be considered to 
provide precise and timely instructions. When discussing the 
design of voice prompts, P5 suggested, "The prompts should be con-
cise and clear. In situations where alerts are triggered frequently, long 
voice prompts would become annoying. Moreover, during high-speed 
driving or in hazardous conditions, lengthy and detailed prompts 
could cause me to miss the optimal time for corrective action." P6 
noted, "Voice prompts should be integrated with navigation systems 
and in-car cameras to assess the external environment, making the 
alerts more accurate. If detailed voice prompts fail to clearly identify 
the danger or provide specific instructions, they may mislead the dri-
ver. In such cases, a general warning would be more effective.". All 
participants agreed that a simple alert sound is not sufficient. P6 
remarked, "An alarm without specific instructions leaves me unsure 
of what action to take." 

6.4.4 The scenarios where people with PD most need driving alerts 
for irregularities. During the preliminary study, interviews revealed 
that people with PD require clear, accurate, and context-specific 
alerts tailored to different driving scenarios. Previous research has 
shown that as PD progresses, patients develop consistent patterns 
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Figure 8: Each participant chose three most needed and three least needed scenarios for our alert system in the interview: The 
scenarios where people with PD most need are speed control and encountering traffic signs. The scenarios where they need it 
the least are parking and encountering traffic signals. 

of motor decline. These fixed motor patterns can lead to poor per-
formance in certain scenarios that require specific motor func-
tions, while their performance may be acceptable in other scenarios. 
Therefore, we believe that a driving alert system for individuals 
with PD should accurately distinguish between critical and less 
critical scenarios. In the most critical scenarios, the system should 
increase the frequency and intensity of alerts, while reducing them 
in less critical scenarios. 

To identify these scenarios and understand the reasons behind 
them, we included a feasibility validation phase where users drove 
through eleven different scenarios mentioned in a previous work 
[19] in a random sequence, while triggering system alerts. In subse-
quent semi-structured interviews, participants were asked to select 
the three scenarios where they felt real-time alerts were most and 
least necessary. The result is shown in Figure 8. The overall re-
sults showed that Control of Speed and Traffic Signs are the top 2 
most needed, while Traffic Signals and Parking are the least. The 
following explains why patients made these choices: 

Control of Speed. People with PD identified this scenario as 
the one most in need of real-time alerts. Our system’s feature ex-
traction showed that some people with PD have poorer throttle and 
brake control compared to the non-PD group. P5, who experiences 
poor coordination in the right lower limb, explained: “My right leg 
often becomes very stiff, and my foot movements slow down and lose 
strength. Since developing the disease, I can no longer press the pedal as 
deeply or accurately as I used to. I often realize only halfway through 
pressing the pedal that I haven’t pressed it as deeply as I intended, 
and then I need to press it again. Additionally, my speed in switching 
my foot between the accelerator and brake has decreased.” With im-
paired control over the accelerator and brake, people with PD find 
it challenging to monitor their speed on the dashboard, making it 
difficult to maintain appropriate speeds. Meanwhile, driving too 
fast or too slow can lead to severe traffic accidents. 

Traffic Signs. Encountering traffic signs was the second most 
frequently chosen scenario by people with PD. These traffic signs 
include stop signs, no right turn on red signs, one-way street signs, 
pedestrian crossing signs, and no-entry signs. Previous studies have 
shown that people with PD tend to have a reduced Useful Field 
of View (UFOV) [16], and in experiments, they identified fewer 
landmarks and traffic signs compared to control groups [80]. When 
asked why they made this choice, P5 explained: "I feel that while 

concentrating on driving, I can’t pay attention to multiple factors on 
the road as I could before I got sick. Missing these traffic signs can 
have serious consequences, often leading to major traffic violations." 

Overtaking, Turns, Lane Changes & Merging and Curving. 
people with PD often experience resting tremors or rigidity, and 
when these symptoms affect the hands, they can significantly impair 
steering control. Participants ranked overtaking and turning as the 
third most critical scenarios, and lane changing & merging as the 
fourth, for needing a driving alert system. In these situations, people 
with PD need to change lanes or turn, requiring both hands to 
maintain precise control of the steering wheel. P6, who experienced 
significant tremors in the left hand, shared: "I usually steer with just 
my right hand. When making sharp turns, it’s difficult to manage 
without using my left hand. However, when I use both hands, my 
control over the wheel’s stability is noticeably worse than with just 
one hand. Additionally, during lane changes and turns, I often need 
to consider vehicles and pedestrians outside my field of vision, which 
presents a challenge for me." However, driving on curved roads, 
which also requires steering, was voted as the third least necessary 
scenario for alerts. When asked why, P5 explained: "On curved roads, 
I only need to focus on staying within the lane and don’t have to pay 
as much attention to the behavior of other vehicles. It’s simpler." 

Lane Observance. Keeping the vehicle within the lane was 
relatively less in need of additional alerts for people with PD. P4 
mentioned: "Nowadays, many cars are equipped with lane-keeping 
features, which are already sufficient to help me stay in the lane." 

Starting. The start-up phase was ranked as the third least nec-
essary scenario for alerts by people with PD. P2 shared: "Before I 
start driving, I always check my surroundings, and this habit ensures 
my safety during the start-up phase. Additionally, since the vehicle is 
moving slowly at this stage, it’s easier to control." 

Traffic Signals. Encountering traffic lights was ranked as the 
second least necessary scenario for alerts by people with PD. P4 
explained: "Aside from turning, intersections with traffic lights typi-
cally involve low-speed, straight-line driving. Plus, there’s plenty of 
time to observe the surroundings while waiting for the green light." 

Parking and Backing Up. Parking and backing up were ranked 
as the least and third least necessary scenarios for alerts by people 
with PD, for similar reasons. P7 explained: "When parking or backing 
up, the vehicle is moving at a low speed, making serious accidents 
less likely. More importantly, my car is equipped with parking sensors 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

and a reverse-assist system, which are fully capable of helping me 
with these maneuvers." 

7 DISCUSSION 
In the discussion, we further discuss future opportunities regarding 
system optimization directions, comprehension of system alerts 
by individuals with PD, and transferring our work to real-world 
driving environments. 

7.1 System Optimization Directions 
From the research, we found that there is significant variability 
among people with PD, so the system should offer personalized 
customization features. These differences manifest in two key as-
pects: 1) the progression of the disease, typically described by the 
Hoehn-Yahr scale [63], and 2) the dominant symptoms, which can 
vary even among people at the same Hoehn-Yahr stage [59]. Some 
people may experience bradykinesia (slowness of movement), while 
others may exhibit resting tremors, which often appear on one side 
of the body in the early stages [4, 85]. Given that driving (specifi-
cally in left-hand drive cars) places the highest demand on the right 
leg, and that one stable arm is usually sufficient to control the steer-
ing wheel, both the progression of the disease and the dominant 
symptoms can have a significant impact on driving ability [15, 17]. 
Therefore, a personalized design approach is essential. 

Furthermore, since eye-tracking data collection methods may 
depend on factors such as eye size or the use of corrective lenses [9, 
12, 24, 79, 87], determining the driving condition of people with 
PD based solely on eye-tracking data may not be reliable for ev-
eryone. As a result, the system should offer two modes: one that 
incorporates eye-tracking data and one that does not, in order to 
enhance robustness. In addition, during the collaborative design 
process with people with PD, we explored tactile feedback methods. 
However, compared to visual and auditory cues, tactile feedback 
lacked the richness needed to differentiate between various types of 
irregular behavior, and it was challenging to calibrate the intensity 
to capture attention without interfering with driving. As a result, 
this method was not presented in user experiments. The use of 
tactile feedback for alerting people with PD to driving irregularities 
remains an area requiring further research. 

Finally, our system has the potential to be adapted for broader 
use, assisting individuals whose driving abilities are impaired by 
similar symptoms. Since our system is capable of detecting irregular 
driving patterns caused by PD—such as stiffness and tremors in 
the limbs, reduced attention span, and slower reaction times—it 
could also be applied to older adults [48] and individuals affected 
by other conditions with similar manifestations, such as essential 
tremor, Alzheimer’s disease, and stroke [32, 49, 54, 68]. 

7.2 Comprehension of System Alerts by 
Individuals with PD 

During the experiment, when people with PD received system 
alerts, we asked them what they believed had triggered the alert. 
Since most participants didn’t have a computer science background 
and we didn’t explain the underlying logic of the system’s alert 
algorithm, their interpretations of the reasons behind the alerts 
sparked our thinking. Sometimes, their reasoning matched our 

design criteria (e.g., not braking for a certain period or excessive 
steering wheel movement), but on other occasions, they attributed 
the alerts to factors outside the system’s scope (e.g., a traffic accident 
ahead). 

This gap in comprehension highlights a critical aspect of human-
centered AI in assistive driving systems. Human-centered AI em-
phasizes the importance of creating an AI system that is reliable, 
safe, and trustworthy [73]. To improve the quality of life for people 
with PD, it also underscores the necessity for AI systems to address 
real-life human challenges, such as eating and walking [2, 5, 13]. 
In assistive driving systems, this approach is particularly vital, as 
drivers must trust and act on the system’s alerts to make real-time 
decisions. If alerts are not communicated clearly, the system’s ef-
fectiveness can be compromised, potentially leading to incorrect 
decisions and new safety risks, as shown by the participants’ mis-
understandings. 

To address this, we employed a data-driven ML pipeline. This 
pipeline extracts features from specific dangerous behaviors and 
trains the model based on these features. By doing so, the system 
is able to link alerts to the corresponding behaviors, ensuring that 
the reasons behind each alert are more directly tied to observable, 
understandable driving patterns. This approach enhances the clarity 
of alerts and aligns the system’s actions with users’ expectations, 
ultimately improving the system’s effectiveness and user trust. 

7.3 Transferring This Work to Real-World 
Driving Environments 

Firstly, the evaluation parameters used in our system can be ob-
tained from existing equipment in real-world driving environ-
ments, eliminating the need for additional hardware. Eye move-
ment data can be captured using in-vehicle cameras designed for 
detecting driver fatigue and distraction through computer vision 
techniques [60, 82], while pedal and steering wheel data can be 
retrieved from the car’s CAN bus [52]. Thus, deploying the sys-
tem’s algorithm on the vehicle’s onboard computer will involve 
relatively low future costs in terms of time and money. Secondly, 
in practical use, the system can be integrated with existing vehicle 
fatigue and distraction monitoring systems [44, 74], which helps 
mitigate some of the interference from irregular driver states on 
the system’s algorithms. 

Our system has proven the feasibility of using algorithms to mon-
itor the driving behavior of people with PD. However, transitioning 
to a real-world driving environment presents challenges due to dif-
ferences between driving simulators and actual driving conditions 
(e.g., real vehicles have different steering wheel and pedal resistance 
parameters, real-world driving offers a wider visual field, and the 
driving environment can vary with road conditions and bumps). 
To successfully implement the model in real-world settings, we 
must collect larger-scale driving data from people with PD in con-
trolled on-road environments, alongside data from non-PD drivers, 
to refine and validate the computational parameters. The system’s 
effectiveness should then be verified by people with PD who have 
been assessed as fit or unfit to drive by official driving evaluation 
agencies before it is applied to real-world driving scenarios. 
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8 Limitation 
In our research, we designed and evaluated PANDA, a system aimed 
at helping individuals with PD drive safely and confidently. How-
ever, the relatively small participant size may limit the generaliz-
ability of our findings to the broader PD population. Nevertheless, 
we anticipate that additional data collection will enhance the ro-
bustness of our alert model. For safety and ethical reasons, we 
utilized a simulated driving approach to investigate the driving 
patterns of individuals with PD. Incorporating real-world driving 
scenarios has the potential to further advance our work toward 
practical applications in everyday driving settings. Furthermore, 
our invitation-based recruitment strategy may have inadvertently 
excluded participants with poorer driving abilities, potentially lim-
iting the comprehensiveness of our dataset. During the driving data 
collection phase, we aimed to implement a fully balanced Latin 
Square design to ensure comprehensive data coverage. While the 
premature withdrawal of a participant with PD and the non-PD 
participant count not being a multiple of the conditions resulted 
in a slight imbalance, we believe the design still provides mean-
ingful insights and maintains its capacity to support our analysis 
effectively. Despite the limitations mentioned above, we believe our 
work made a novel contribution in exploring the challenges faced 
by people with PD in driving and have successfully investigated 
the feasibility of analyzing their driving status in real-time under 
the given conditions. 

9 CONCLUSION 
Many emerging technologies are dedicated to improving the quality 
of life for people with PD. In this work, we conducted a series of 
investigations aimed at helping people with PD drive more confi-
dently and safely. In the preliminary study, we thoroughly identified 
existing practices, perceptions, and challenges of people with PD 
regarding driving to guide design decisions in the development of 
PANDA. Using data collected from a driving simulator experiment, 
we trained a machine learning model to detect driving irregularities 
driving behaviors in people with PD and developed PANDA. Finally, 
user experiments provided valuable guidance on the design of alert 
methods and validated the feasibility of the real-time alert system. 
Our work represents a first step toward the real-time, quantitative 
analysis of driving behavior in people with PD. 
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A Data of All Participants 
Due to the limited space in the main text, we present the driving performance data collected from all participants here, as described in the 
data collection procedure (Section 4), to supplement the completeness of the data. 

A.1 Steering Control Performance of People with PD 

Figure 9: This figure sequentially presents the steering control performance of PD 1 to PD 9 during the data collection process. 
In each chart, the horizontal axis represents time in seconds, while the vertical axis represents the steering wheel angle. The 
zero point on the vertical axis (center of the y-axis) indicates a steering wheel angle of 0, with positive values representing a 
right turn and negative values representing a left turn. 

A.2 Steering Control Performance of Non-PD Participants 

Figure 10: This figure sequentially presents the steering control performance of NC 1 to NC 13 during the data collection 
process. In each chart, the horizontal axis represents time in seconds, while the vertical axis represents the steering wheel angle. 
The zero point on the vertical axis (center of the y-axis) indicates a steering wheel angle of 0, with positive values representing 
a right turn and negative values representing a left turn. 
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A.3 Throttle Control Performance of People with PD 

Figure 11: This figure sequentially presents the throttle control performance of PD 1 to PD 9 during the data collection process. 
In each chart, the horizontal axis represents time in seconds, while the vertical axis represents the pedal depth. The highest 
values (at the top of the y-axis) represent fully released pedals, while lower values indicate deeper pedal engagement. 

A.4 Throttle Control Performance of Non-PD Participants 

Figure 12: This figure sequentially presents the throttle control performance of NC 1 to NC 13 during the data collection process. 
In each chart, the horizontal axis represents time in seconds, while the vertical axis represents the pedal depth. The highest 
values (at the top of the y-axis) represent fully released pedals, while lower values indicate deeper pedal engagement. 
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A.5 Brake Control Performance of People with PD 

Figure 13: This figure sequentially presents the brake control performance of PD 1 to PD 9 during the data collection process. 
In each chart, the horizontal axis represents time in seconds, while the vertical axis represents the pedal depth. The highest 
values (at the top of the y-axis) represent fully released pedals, while lower values indicate deeper pedal engagement. 

A.6 Brake Control Performance of Non-PD Participants 

Figure 14: This figure sequentially presents the brake control performance of NC 1 to NC 13 during the data collection process. 
In each chart, the horizontal axis represents time in seconds, while the vertical axis represents the pedal depth. The highest 
values (at the top of the y-axis) represent fully released pedals, while lower values indicate deeper pedal engagement. 
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B Thematic Analysis Tables 
In this section, we present thematic analysis results from the preliminary study and the user study. 

B.1 Thematic Analysis Results in the Preliminary Study with People with PD 

Theme Subtheme Theme description Number of participants % 

Demand 

Live independently 
People with PD demonstrated a desire to live 

independently 
8 72.7 

Driving 

Maintaining the ability to drive is crucial for 
preserving independence and plays a 

significant role in the self-esteem of people 
with PD 

8 72.7 

Access driving ability 
People with PD have a desire to access their 

driving ability 
4 36.4 

Factors Impact Driving 

"On-off" effect of PD 
Participants noted that the driving state is 

influenced by the fluctuation of PD symptoms 9 81.8 

Sleep attacks Participants reported frequently feeling 
drowsy or sleepy while driving 

6 54.5 

Weather influence 
Participants reported difficulties when driving 

in strong sunlight 3 27.3 

Challenges 

Reaction speed 
Participants noted that their reactions had 

slowed after developing PD 
9 81.8 

Multitasking ability 
Participants noted that their multitasking 
ability decreased after developing PD 

4 36.4 

Privacy 
Designing an alert system for people with PD 
must address privacy and social considerations 6 54.5 

Table 6: The thematic analysis result in the preliminary study for interviews with 11 people with PD. 

B.2 Thematic Analysis Results in the Preliminary Study with PD Specialists 

Theme Subtheme Theme description Number of participants % 

Current Solutions 
Outpatient concerns 

PD specialists in outpatient clinics do not 
typically focus on whether patients can 

maintain their driving ability 
4 100 

Guidelines No uniform legal criteria to guide PD 
specialists on assessing driving fitness 4 100 

Factors Impact Driving 
"On-off" effect of PD 

PD specialist mentioned the "on-off" 
phenomenon of PD affects driving 

3 75 

Sleep attacks PD specialist mentioned the impact of 
drowsiness on driving 

3 75 

Challenges 

Reaction speed 
PD specialist noted people with PD have a 

slower reaction speed 
4 100 

Multitasking ability 
PD specialist noted people with PD have 

impaired multitasking ability 
2 50 

Privacy 
Designing an alert system for people with PD 
must address privacy and social considerations 2 50 

Table 7: The thematic analysis result in the preliminary study for interviews with 4 PD specialists. 
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B.3 Thematic Analysis Results in the User Study 

Theme Subtheme Theme description Number of participants % 

Feedback of the System 

Acceptance level Participants recognized the significance of our 
system 

5 100 

Useful scenarios 
People with PD thought this system is useful 
when they experience fluctuations in their 

driving performance 
4 80 

Acceptance of Scenarios 
Acceptable scenarios Scenarios where independent driving is more 

acceptable 
3 60 

Unacceptable scenarios Driving with other passengers in the car is less 
acceptable due to privacy concerns 3 60 

Table 8: The thematic analysis result in the user study with 5 people with PD. 
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